
Final Project

for the national master’s course

Numerical Partial Differential Equations spring 2006

Albert-Jan Yzelman∗ & Tijmen Collignon†

August 22, 2006

1 The problem

In this report we will describe the Method of Lines and use this to solve the time-dependent
elliptic boundary value problem:

find u ∈ C2(Ω) such that





∂
∂t
u(x, y, z, t) = divK∇u(x, y, z, t) + qu(x, y, z, t) on Ω × [0, T]

u(x, y, z, t) = 0 on ∂Ω × [0, T]

u(x, y, z, 0) = u0(x, y, z)

using the continuous piecewise quadratic finite element method. We also have q ≥ 0 and K
is a user-specified symmetric positive definite 3 × 3 matrix. Writing the partial differential
equation explicitly results in

∂

∂t
u =(k11 + k21 + k31)

∂2

∂x2
u

+(k12 + k22 + k32)
∂2

∂y2
u

+(k13 + k23 + k33)
∂2

∂z2
u

+qu on Ω × [0, T].

2 Weak formulation

First, we define u(t) = u(·, t) ∈ H1
0 (Ω). The following weak formulation is for each t ∈ [0, T].

We want to find a function u(t) ∈ H1
0 (Ω) such that

a(u(t), v) =

(
∂

∂t
u(t), v

)
∀v ∈ H1

0 (Ω) (1)

u(0) = u0 ∈ H1
0 (Ω)

∗Electronic address: ajy777@gmail.com
†Electronic address: tpcollig@math.uu.nl

1

where the bilinear form a(·, ·) is defined as

a(u(t), v) = −(K∇u(t),∇v) + q(u(t), v). (2)

This is called the weak formulation of our boundary value problem and because the bilinear
form (2) is coercive and continuous on H1

0 (Ω)×H1
0 (Ω) the Lax Milgram Theorem ensures us

that this solution u(t) exists and that it is unique.

3 Quadratic tetrahedral finite element method

To approximate the weak solution u(t) of (1) we use the quadratic tetrahedral finite element
method. We choose to use the space V (Th) of continuous piecewise quadratic functions with
respect to a given tetrahedralization Th of Ω. More specifically,

V (Th) = {v ∈ C0(Ω) | v|H ∈ P2(H) for all H ∈ Th}. (3)

We are particularly interested in the space

V0(Th) = V (Th) ∩H1
0 (Ω). (4)

3.1 Finite element formulation (semi-discrete formulation)

For each t, find uh(t) ∈ V0(Th) ⊂ H1
0 (Ω) such that

a(uh(t), vh) =

(
∂

∂t
uh(t), vh

)
for all vh ∈ V0(Th) (5)

uh(0) = Πhu0

where
Π : H1

0 (Ω) → V0(Th).

The reason that we use Πh instead of something like Lhf is that even if you solve equation (5)
exactly at t = 0, this will generally not hold for t > 0.

We will now write m = dim(V0(Th)) and m + l = dim(V (Th)). After choosing any basis
(φj)

m
j=1 for V0(Th) we have for each t

uh(t) =
m∑

j=1

αj(t)φj .

We also have
∂

∂t
uh(t) =

∂

∂t

m∑

j=1

αj(t)φj =

m∑

j=1

α′
j(t)φj

where the apostrophe denotes time derivative. Plugging this in (5) gives

a




m∑

j=1

αj(t)φj , φi


 =




m∑

j=1

α′
j(t)φj , φi


 for all φi ∈ V0(Th)

2

which is equal to the system



a(φ1, φ1) · · · a(φm, φ1)

...
...

a(φ1, φm) · · · a(φm, φm)






α1(t)

...
αm(t)


 =




(∂
∂t
u(t), φ1)

...

(∂
∂t
u(t), φm)


 ≡M



α′

1(t)
...

α′
m(t)


 .

The system matrix of the left hand side can be written as a linear combination A + qM
and the righthand side can be written as Mα′(t), where

A = −




(K∇φ1,∇φ1) · · · (K∇φm,∇φ1)
...

...
(K∇φ1,∇φm) · · · (K∇φm,∇φm)


 and M =




(φ1, φ1) · · · (φm, φ1)
...

...
(φ1, φm) · · · (φm, φm)




resulting in the system

(A+ qM)α(t) = Mα′(t) (6)

where α(0) is determined by Πh and {φj}j .
This is a system of ordinary differential equations (ODEs) which we will solve using the

one-step method Euler forward. So we have to solve for α (numerically) and then plug it into
the finite element formulation. This amounts to two approximations.

4 Choice of basis

1 2

4

56

z

x

8

3

y

9
10

7

Figure 1: The unit tetrahedron

3

We are going to use the nodal basis functions {φj}
m+l
j=1 ∈ V (Th) with nodes at the vertices

and at the midpoints of the edges of a tetrahedron. We want to find a nodal basis {φj}
m+l
j=0

that satisfies
φj(ei) = δij

where δij is the Kronecker delta and the ei are the vertices and midpoints of the tetrahedra.
A simple basis for the unit tetrahedron is given by

ψ1 = x,

ψ2 = y,

ψ3 = z,

ψ4 = 1 − x− y − z.

Each nodal basis function on an arbitrary tetrahedron can be constructed by stretching and
shifting the following ten functions

Φ1 = 2ψ4(ψ4 − p),Φ2 = 2ψ1(ψ1 − p),Φ3 = 2ψ2(ψ2 − p),Φ4 = 2ψ3(ψ3 − p)

Φ5 = 4ψ1ψ3,Φ6 = 4ψ3ψ4,Φ7 = 4ψ2ψ3

Φ8 = 4ψ1ψ4,Φ9 = 4ψ2ψ4,Φ10 = 4ψ1ψ2

which are evaluated at the vertices and at the midpoints νi, which are

νi ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (p, 0, p), (0, 0, p), (0, p, p), (p, 0, 0), (0, p, 0), (p, p, 0)}

shown in Figure 1. Here, p = 1
2 . These functions are obtained by considering each node

separately. For instance, looking at the seventh node ν7 = (0, p, p), all the points that need to
be zero lie on the xz-plane and on the xy-plane. Therefore, if we multiply the basis functions
that are zero here (i.e. ψ2 and ψ3) and normalize, we obtain Φ7 = 4ψ2ψ3.

4.1 Transformation to an arbitrary tetrahedron

Let H be an arbitrary tetrahedron with vertices vi = (xi, yi, zi)
∗ ∈ R

3 for i = 1, 2, 3, 4. We
define the affine transformation from the unit tetrahedron to an arbitrary tetrahedron as

T−1
k : Ĥ → Hk :



x
y
z


 7→



x1

y1

z1


 +



x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1






x
y
z


 . (7)

Indeed we find that for instance (0, 0, 0)∗ 7→ (x1, y1, z1)
∗. Then we have that the ten basis

functions on the reference tetrahedron transform according to

φj = Φj ◦ Tk for j = 1, 2, . . . , 10.

By using this expression we can compute integrals over arbitrary tetrahedra by using the
substitution theorem for integrals.

4

4.2 Local mass and stiffness matrices

The so-called element stiffness and mass matrices are defined by

EA :=




(K∇Φ1,∇Φ1) · · · (K∇Φ10,∇Φ1)
...

...
(K∇Φ10,∇Φ1) · · · (K∇Φ10,∇Φ10)


 and EM :=




(Φ1,Φ1) · · · (Φ10,Φ1)
...

...
(Φ10,Φ1) · · · (Φ10,Φ10)


 .

We will now discuss how to construct these matrices.

Element stiffness matrix. We start by computing the gradients of the ten unit basis
functions.

∇Φ1 =



−3 + 4(x+ y + z)
−3 + 4(x+ y + z)
−3 + 4(x+ y + z)


 ,∇Φ2 =



4x− 1

0
0


 ,∇Φ3 =




0
4y − 1

0


 ,

∇Φ4 =




0
0

4z − 1


 ,∇Φ5 =




4z
0
4x


 ,∇Φ6 =




−4z
−4z

4 − 4x− 4y − 8z


 ,

∇Φ7 =




0
4z
4y


 ,∇Φ8 =




4 − 8x− 4y − 4z
−4x
−4x


 ,∇Φ9 =




−4y
4 − 4x− 8y − 4z

−4y


 ,∇Φ10 =




4y
4x
0


 .

As an example, if we take the second and third basis functions, we find

E3,2
A = (K∇Φ3,∇Φ2) =

∫

bH

(∇Φ3)
∗K(∇Φ2) dxdydz =

∫

bH




0
4y − 1

0



∗

K




4x− 1
0
0


 dxdydz

=

∫

bH

k21(4y − 1)(4x − 1) dxdydz =

∫

bH

k21(1 − 4x− 4y + 16xy) dxdydz = −
1

30
k21. (8)

Instead of computing 55 different integrals, we will use the linearity of integration and the
symmetry of the unit tetrahedron. First we compute the integrals

∫

bH

1 dxdydz =
1

6
,

∫

bH

x dxdydz =
1

24
, (9)

∫

bH

xy dxdydz =
1

120
,

∫

bH

x2 dxdydz =
1

60
(10)

which represent all the possible terms that we might encounter in the integrals. The symmetry
of the tetrahedron ensures us that for instance

∫
x2 dxdydz =

∫
y2 dxdydz. We then construct

the four coefficient matrices that belong to the gradients. For instance, Ω(y) contains the

5

coefficients that belong to the y terms in the gradients. Specifically, these matrices are

Ω(1) =



−3 −1 0 0 0 0 0 4 0 0
−3 0 −1 0 0 0 0 0 4 0
−3 0 0 −1 0 4 0 0 0 0


 , (11)

Ω(x) =



4 4 0 0 0 0 0 8 0 0
4 0 0 0 0 0 0 −4 −4 4
4 0 0 0 4 −4 0 −4 0 0


 , (12)

Ω(y) =




4 0 0 0 0 0 0 −4 −4 4
4 0 4 0 0 0 0 0 −8 0
4 0 0 0 0 −4 4 0 −4 0


 , (13)

Ω(z) =



4 0 0 0 4 −4 0 −4 0 0
4 0 0 0 0 −4 4 0 −4 0
4 0 0 4 0 −8 0 0 0 0


 . (14)

If we want to calculate the element stiffness matrix we have to consider the possible combi-
nations of x, y, z, and the constant terms that results in the multiplication of the gradients.
In other words, using the example given in (8), we get the expression

E3,2
A =

[
1

6
Ω∗

(1)KΩ(1) +
1

24

(
Ω∗

(1)KΩ(x) + Ω∗
(y)KΩ(1)

)
+

1

120
Ω∗

(y)Ω(x)

]

3,2

(15)

=

(
1

6
−

4

24
−

4

24
+

16

120

)
k21 = −

1

30
k21. (16)

As for the general case, we have to include every possible combination of the x, y, z, and
constant terms, resulting in the expression

EA =
1

6
Ω∗

(1)KΩ(1)

+
1

24

(
Ω∗

(1)KΩ(x) + Ω∗
(1)KΩ(y) + Ω∗

(1)KΩ(z) + Ω∗
(x)KΩ(1) + Ω∗

(y)KΩ(1) + Ω∗
(z)KΩ(1)

)

+
1

120

(
Ω∗

(x)KΩ(y) + Ω∗
(y)KΩ(x) + Ω∗

(x)KΩ(z) + Ω∗
(z)KΩ(x) + Ω∗

(y)KΩ(z) + Ω∗
(z)KΩ(y)

)

+
1

60

(
Ω∗

(x)KΩ(x) + Ω∗
(y)KΩ(y) + Ω∗

(z)KΩ(z)

)
. (17)

We would like to transform the element stiffness matrix to an arbitrary tetrahedron. Using
the transformation given in (7) and the chain rule we can write

∇φ = ∇(Φ ◦ T) = [D(Φ ◦ T)]∗ = [(DΦ ◦ T)(DT)]∗ = (DT)∗(DΦ ◦ T)∗ = (DT)∗(∇Φ ◦ T)

where we have omitted the indices for clarity. Using the same basis functions as an example
as before, we get for an arbitrary tetrahedron

∫

H

(∇φ3)
∗K(∇φ2) dxdydz =

∫

H

(∇Φ3 ◦ T)∗(DT)K(DT)∗(∇Φ2 ◦ T) dxdydz (18)

=

∫

bH

(∇Φ3)
∗(DT)K(DT)∗(∇Φ2)|det(DT)−1| dxdydz (19)

6

where we have used the Substitution Theorem in the second equality. We also know that

DT =



x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1



−1

so DT is constant on H. The transformed element stiffness matrix can thus be easily obtained
by replacing K in (17) with

(DT)K(DT)∗

|det(DT)|
.

Element mass matrix. The integrals in this matrix can be evaluated very easily. For
instance

E3,2
M = (Φ3,Φ2) =

∫

bH

Φ3Φ2 dxdydz =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
2y(y−

1

2
)2x(x−

1

2
) dzdydx =

1

2520
.

Calculating the 55 different integrals gives the following symmetric matrix

EM :=




420
2520 420
2520 2520 420
2520 2520 2520 420
−420 −630 −420 −630 315/4
−630 −420 −420 −630 315/2 315/4
−420 −420 −630 −630 315/2 315/2 315/4
−630 −630 −420 −420 −420 315/2 315 315/4
−630 −420 −630 −420 315 315/2 315/2 315/2 315/4
−420 −630 −630 −420 315/2 315 315/2 315/2 315/2 315/4




where we have to take the reciprocal of each element to obtain the element mass matrix EM .
Also, the upper triangular part is omitted to avoid clutter.

Transforming this to an arbitrary tetrahedron is done in a similar way as with the stiffness
matrix:

∫

H

φ3φ2 dxdydz =

∫

H

(Φ3 ◦ T)(Φ2 ◦ T) dxdydz =

∫

bH

Φ3Φ2|det(DT)−1| dxdydz. (20)

In other words, the transformed element mass matrix can be written as

EM

|det(DT)|
. (21)

5 Assembling the global stiffness and mass matrices

To construct the global mass and stiffness matrix for V (Th), we first obtain the (m+l)×(m+l)
matrices Â and M̂ of the space V (Th) and then remove the l functions that belong to the
vertices and midpoints that are on the edge. In order to do this, it can be shown that

a(φi, φj) =

n∑

k=1

∫

Hk

(−[K∇φi(x, y, z)]
∗∇φj(x, y, z) + qφi(x, y, z)φj(x, y, z)) dxdydz

7

where n is the number of tetrahedra in the tetrahedralization. Using this, it is straightforward
to show that

Â =
n∑

k=1

Âk and M̂ =
n∑

k=1

M̂k (22)

where

Âk =

[∫

Hk

[K∇φi(x, y, z)]
∗∇φj(x, y, z) dxdydz

]

ij

(23)

and M̂k =

[∫

Hk

φi(x, y, z)φj(x, y, z) dxdydz

]

ij

. (24)

Note that on an arbitrary tetrahedron, only the ten nodal basis functions {φj} are non-zero.

6 ODE solvers

To solve the system of ordinary differential equations given in (6), we can use the Euler
forward method. For the general case, we want to solve the system

{
α′(t) = f(t, α(t)), t ∈ [0, T]

α(t0) = α0

for some f . In our particular case, this leads to the system
{
α′(t) = M−1(A+ qM)α(t), t ∈ [0, T]

α(0) = α0

where α0 is determined by the nodal basis functions {φj}.
Applying the Euler forward method to this system results in the approximating sequence

(α̃i)i≥0, where

α̃i+1 = α̃i + k(M−1A+ qI)α̃i = (I + k(M−1A+ qI))α̃i (25)

where k is the stepsize. This method is of order O(k).

7 Testing the finite element part

To investigate whether the implementation of the finite element part and the refinement
procedure is working correctly, we will study the convergence by using as an exact solution

u(x, y, z) = xyz(1 − x)(1 − y)(1 − z). (26)

To do this, we have to compute the three second order partial derivatives

∂2

∂x2
u = −2yz(y − 1)(z − 1), (27)

∂2

∂y2
u = −2xz(x− 1)(z − 1), (28)

∂2

∂z2
u = −2xy(x− 1)(y − 1). (29)

8

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(a)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(b)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(c)

Figure 2: Slices of the function u

In other words, we will solve

given f ∈ C0(Ω), find u ∈ C2(Ω) such that

{
divK∇u+ qu = f on Ω

u = 0 on ∂Ω
(30)

where we take q = 1,K = I, and as domain Ω the unit cube and

f(x, y, z) = − 2yz(y − 1)(z − 1) − 2xz(x− 1)(z − 1) − 2xy(x− 1)(y − 1)

+ xyz(1 − x)(1 − y)(1 − z)

and compare the approximated solution with the exact solution u. Shown in Figure 2 are
slices of the function u along the x, y, and z directions to help visualize the function.

In this case, the finite element approximation uh is the unique element from V0(Th) which
satisfies

a(uh, vh) = (f, vh) for all vh ∈ V0(Th). (31)

9

To evaluate the integrals on the right-hand side, we propose to replace the function f with
its quadratic interpolant L2

hf ∈ V (Th) on the vertices and midpoints of the tetrahedra. This
allows us to solve the integrals exactly, although we will now be solving for ûh. That is, we
obtain the ûh from

a(ûh, vh) = (L2
hf, vh) for all vh ∈ V0(Th) (32)

where

L2
hf =

m+l∑

j=1

f(ej)φj . (33)

Figure 3 shows slices of the approximation ûh using our implementation of the finite element
method for two refinements. If we compare these to the exact solution given in Figure 2 we
conclude that the finite element method is working correctly.

8 Conclusion

We were successful in correctly implementing the refinement procedure of the tetrahedral-
ization. Also, the finite element method gave correct results in approximating the solution
of (30). Unfortunately, despite attempts to solve the time-dependent system using Euler
forward, we were unable to obtain correct results.

8.1 Suggestions for future work

• Correctly implement the Euler forward method to solve the time-dependent boundary
value problem.

• Try to visualize the solution of the system of ODEs by using Matlab’s movie and slice.

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Initial tetrahedralization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) After one refinement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) After two refinements

Figure 3: Slices of the approximation ûh for two refinements

11

(a) Initial tetrahedralization (b) After one refinement

Figure 4: Tetrahedralization of the unit cube

A Appendix: the data structure

In this section we shall briefly describe the data structure we use for representing the tetrahe-
dra. Tetrahedra are defined by four distinct vertices in 3-dimensional space which do not lie
on the same (two-dimensional) plane. Therefore, it seems prudent to create a data structure
which in one matrix keeps track of the coordinates of these vertices; while on the other hand
we have a matrix keeping track about which vertices given tetrahedra are built from.
However, in our application this alone is not enough. We also need to keep seperate the
boundary vertices, as the need special treatment regarding boundary conditions. In this ap-
pendix we will first introduce the tetrahedron storage mechanism. Then we will give a way to
refine a given tetrahedra. After that, we will move to introduce a method for fast tetrahedron
refining.

A.1 Storage mechanism

Because we want the internal and external vertices strictly divided, we use instead of one
matrix containing the vertex coordinates, two matrices. We denote the first coordinate matrix
N , and in this matrix is stored the internal vertices. The coordinate vectors are stored column-
wise; thus the matrix dimensions are 3 rows by ni columns, where ni the number of internal
vertices. The second matrix is denoted E and contains the external vertices (the vertices
which lie on the boundary). The coordinate vectors are stored in the same way as in N .
Using two matrices has as an advantage we immediatly know which vertices are boundary
and which are not. Also, the matrices can grow independantly of each other.
Now the matrix which stores the individual tetrahedra. This matrix is denoted T and stores

12

coordinate indeces column wise. Given that tetrahedra are defined by 4 points, T has 4 rows
and nt columns, nt the number of tetrahedra.
There is, however, a small problem. Suppose t is a column from T ; i.e., let t define a single
tetrahedron. Denote t = {t1, t2, t3, t4}. The ti should denote vertex indeces. However, we
now use two coordinate matrices to store the vertices. To solve this problem, we define that
for all ti > 0, ti refers to an internal vertex. Thus ti is a column index of the matrix N . If,
however, ti < 0, we define that ti then points to an boundary vertex point in the matrix E.
The column index is then given by −ti.
Since we want to implement FEM with quadratures, we do not only need the vertices of the
tetrahedron, but also the mid-points between all vertex pairs. We will, at the start of each
FEM call, start an algorithm which adds all mid-points to N or E, whichever is appropiate.
The algorithm will return a matrix M , of size (6,nt); at each column are index numbers to
the mid-points beloning to the tetrahedron in T at the same column index. The order at
which the mid-points are stored row-wise is the same is in Figure 1
This concludes the basic structure of the tetrahedron storage mechanism.

A.2 Tetrahedron refinement

Refining a tetrahedron can be done by dividing it into eight smaller tetrahedra, which are
isomorphic to the original tetrahedron. To demonstrate this method, suppose we have an
arbitrary tetrahedron defined by the vertices t1, . . . , t4. Let us (arbitrarily) define the bottom
triangle of this tetrahedron to be defined by the vertices t1, t2 and t3. The top of the
tetrahedron will then ofcourse be t4.
Ofcourse, before we can refine, we must first construct new points on the edges of the current
tetrahedron. We do this by creating a new point at the middle of each edge of the original
tetrahedron. This makes it possible to construct isomorphic tetrahedra as a refinement. We
group these new mid-point vertices in two; we have the lower plane mid-points which can
be constructed by taking the mid-points of the edges at the lower triangle. The upper plane
mid-points are constructed by taking the midpoints of the edges t1-t4, t2-t4, and t3-t4. Why
we would group the new mid-points like this will become clear later on.
The first four refined tetrahedra are easy to construct. We take any of the four original vertices
and let them define a new tetrahedron by connecting it with the three new mid-points found
on its edges to the other original points. Now we have to fill up the tetrahedron with four
other new small tetrahedra.
This can be done by choosing a vertex on the lower plane midpoints. Firstly, we then can
create a tetrahedron with as base triangle the upper plane midpoints, and as the top the
chosen vertex. If we now picture the not-yet completed refinement, we notice three open
triangles on the original tetrahedron sides. If we take those triangles as a bottom and the
chosen vertex as a top, we can create two new tetrahedron; for one triangle it is not possible
to have the chosen vertex as the top, since that vertex is part of the base triangle. For that
tetrahedron, we instead take the point on the upper plane midpoints which is symmetric
to the chosen vertex as the top vertex. Now we have a total of eight tetrahedra and the
refinement is complete.

13

A.3 Refinement procedure

With the above information, we can now derive a refinement procedure. Let t0 = {t01
, t02

, t03
, t04

}
again denote a tetrahedron. Let l = {l1, l2, l3} be the new lower plane midpoints, and
u = {u1, u2, u3} be the new upper plane midpoints. Furthermore, let m be the operator
used to determine mid-points and let the following be true:

l1 = m(t01
, t02

)

l2 = m(t01
, t03

)

l3 = m(t02
, t03

)

u1 = m(t01
, t04

)

u2 = m(t02
, t04

)

u3 = m(t03
, t04

)

Then the initial four new tetrahedra are defined as:

t1 = {t01
, l1, l2, u1}

t2 = {t02
, l1, l3, u2}

t3 = {t03
, l2, l3, u3}

t4 = {t04
, u1, u2, u3}

Having already analyzed how to create the other four tetrahedra, we can immediatly write
down those also, using the above coordinate names:

t5 = {u1, u2, u3, l1}

t6 = {l2, u1, u3, l1}

t7 = {l3, u2, u3, l1}

t8 = {l2, l3, l1, u3}

We can easily write the above equations in any program. The key is how to efficiently
add the new coordinates and tetrahedra to the data structure. We insist that a refinement
procedure on a tetrahedron is called by giving the tetrahedron’s index number. That way,
we can easily replace the original tetrahedron in T with one of the eight resulting ones. The
other seven can be appended at the end of the matrix T . Updating E and N is not that easy.
There are two main problems.
The first is that we do not want to store any coordinates twice; otherwise, the same coordinate

14

would be stored six time, at maximum. That is not all too horrible for a few refinements, but
after only about 3 refinements the overhead already is quite excessive.
The second problem is that we need to determine whether or not any new points are on the
boundary. This is not all that easy to accomplish. We want to have a method of refining
which works on all initial tetrahedralizations, whatever may be their shape.
We would like to tackle both problems with methods that are not too slow either; this rules
out simply checking if coordinates already exist to solve the first problem, this is just too
slow. Instead, we use lookup matrices to find if coordinates already exists, and if they are
already on the boundary. We use two different lookup matrices, one for the external vertices
and one for the internal. This is so, because their functionality differs; the latter primarily
tackles the first problem, whereas the matrix tied to the external points needs to tackle the
second problem.

A.3.1 Internal vertices lookup matrix and its usage

New vertices are added at each refinement call on a tetrahedron. Therefore, the lookup matrix
must be given to and updated by the method that does the actual refining of one tetrahedron.
Let us for now assume that the lookup matrix is globally available and that it is denoted by
look. This matrix will have the initial size (ni + ne, ni + ne), i.e., a square matrix of length
equal to the sum of the internal and external vertices. All entries are initialized to zero. Now,
when a new point between two vertices, the corresponding matrix entry is set to the index of
that new point.
So when we want to check if a given coordinate already is added to the data structure, we
check if look(i1, i2) is zero (with i1,2 the spawning points of the new mid-point). If so, this is
a new coordinate and must be added to N . If not, we know that the coordinate is already
added and furthermore, we even know the index at which this coordinate was added.
Note that look also has room for the external vertices. This is because not every midpoint
derived from one or even two external points is an external point itself. This most of the time
is not the case.

A.3.2 External vertices lookup matrix and its usage

Denote the external lookup matrix C. C is also a square matrix, with initial length equal to
ne, the number of external vertices. Now, C differs from look in the sense that it is more of
a connection matrix than a lookup matrix. It defines which external vertices lie on the same
side of the boundary surface.
Now suppose we have calculated a new mid-point coordinate from parent coordinates from E
with indeces i1,2 (If one of the coordinates does not come from E, the new midpoint surely
is not a new point on the boundary). Now, if Ci1 ∩ Ci2 6= ∅, indicating that the parent
coordinates are on the same side of the boundary surface, then the new coordinate surely is
on the boundary as well. Thus we add this new coordinate to E and return the new index
i3. However, we now also must update the C matrix. For this, we set:

∀x ∈ {Ci1 capCi2} : C(i3, x) = 1

This procedure may be expressed in words as follows. The new point i3 lies on the same
side (or sides in case of corner coordinates) its parents have in common. In common, because

15

corner border coordinates may lie on multiple surfaces while others lie on exactly one side
only. The in-between mid-point would then ofcourse lie on the second parent’s side.

However, if we at a later point come across the same coordinate which must be added,
we should not allow this process to repeat itself completely; this would cause multiple entries
of the same coordinate. To prevent this, we use a second matrix lookup to administrate the
already added points. This matrix behaves exactly like the look matrix for internal points
discussed earlier, except this one obviously is used for external points.

Note also that the matrix C contains data which never should be lost (that is, if we
want to be able to refine further), and that the matrix C may grow as more boundary
coordinates will be added when refining. In contrast, the look and the lookup matrices are
only necessary during the refinement procedure itself, and thus may be cleared after (or in
between) refinement procedures.

A.4 Conclusion

All the above ingredients put together make up our currently implemented data structure and
refinement algorithm. We tried to find a method that allows faster determination when trying
to find if a coordinate already has been added to the data structure. Also we have devised a
way to correctly check if a new point derived from two boundary points is a boundary point
itself.

16

References

[1] Jan Brandts, Introduction to Numerical Analysis, Lecture Notes, February 6, 2006.

[2] Anders Logg, Automating the Finite Element Method, Lecture notes for the Sixth Winter
School in Computational Mathematics, Toyota Technological Institute at Chicago, Geilo,
March 5—10, 2006.

17

	The problem
	Weak formulation
	Quadratic tetrahedral finite element method
	Finite element formulation (semi-discrete formulation)

	Choice of basis
	Transformation to an arbitrary tetrahedron
	Local mass and stiffness matrices

	Assembling the global stiffness and mass matrices
	ODE solvers
	Testing the finite element part
	Conclusion
	Suggestions for future work

	Appendix: the data structure
	Storage mechanism
	Tetrahedron refinement
	Refinement procedure
	Internal vertices lookup matrix and its usage
	External vertices lookup matrix and its usage

	Conclusion

